😊关于

大家好,欢迎来到我的个人主页!我是周健航,你也可以叫我 Rich。我在多个地区、国家和机构从事过科研工作。目前,我是上海大学的助理教授、硕士生导师、上海市白玉兰人才、上海市海外高层次人才。2023 年,我在澳門大學(University of Macau)获得计算机科学博士学位(PhD in Computer Science)。随后,我在大阪大学(日本)担任博士后研究员(2023-2025)。此外,我曾在香港中文大学(CHUK,SZ)担任访问研究员。我的研究方向主要包括:稀疏学习、绿色学习、医学生物特征识别、非完整多模态聚类。我曾参与多个相关项目,如Cybernetics Avatar与可信生物识别系统 (JST Moonshot Project)。目前,我接受并主持国家自然科学基金青年项目(2026–2028)、上海市白玉兰人才青年项目(海外)等科研项目和资助。2025年,在日常生活中,我喜欢徒步、旅行、咖啡时光,以及一切新鲜有趣的事物。我也非常乐于与不同领域的研究者合作(如医学、脑科学等)。如果你对合作或交流感兴趣,欢迎随时联系我!😉

🏫学术职位

  • 助理教授, 上海大学, 至今.
  • 博士后研究员, 大阪大学(Osaka University), 2023-2025.

🎓教育背景

  • 哲学博士(Ph.D. in Computer Science), 澳門大學(University of Macau), 2020-2023.
  • 理学硕士(M.S. in Computer Science),澳門大學(University of Macau), 2018-2020.
  • 工学学士(B.Eng. in Computer Science & Technology), 南京林業大學, 2014-2018.

🔬研究方向

  • 稀疏学习; 子空间学习; 图学习; 医学生物特征识别; 绿色学习;

💎科研项目

  • 面向医学生物特征识别的绿色学习方法研究, 国家自然科学基金青年项目(No. 62506224), 主持,2026-2028
  • 上海市白玉兰人才青年项目(海外),主持,2026-2028

⚜️课题组

关于我的课题组((I2BP2 Research Group),请访问:课题组主页

  • 我们正在招募对研究充满热情的研究生及高年级本科生(大三/大四),欢迎有志于在 生物特征识别、模式分析以及隐私保护的身份识别科学(Identity Science)方向开展研究的同学加入我们的课题组。如果你对此感兴趣,欢迎通过电子邮件与我联系!
  • 目前课题组可研究的方向有:医学生物特征识别、步态识别、人脸隐私保护与生成、非完整多模态聚类、字典学习及稀疏表示;
  • 课题组与国内外多个知名大学与研究机构的研究团队建立合作关系,包括:香港中文大学(Chinese University of Hong Kong)、澳门大学(University of Macau)、日本大阪大学(The University of Osaka)、澳大利亚南昆士兰大学 (University of Southern Queensland)、澳门城市大学 (City University of Macau)、广东工业大学 (Guangdong University of Technology)

📃发表论文(部分)

  • Alsherfawi, A., Zhou, J.*, Shehata, A., & Yagi, Y. (2025). Behavioral Signature Decoding: Facial Landmark-based Graph Learning for Cybernetic Avatar Authentication. 2025 IEEE International Joint Conference on Biometrics (IJCB2025).
  • Ang, J., Zhou, J.*, & Wu, X. (2025). Privacy-preserving Facial-based Diagnosis with Shared-Attention Multitask Learning. 2025 IEEE International Joint Conference on Biometrics (IJCB2025).
  • Zhou, J., Li, S., Zeng, S., & Zhang, B. (2024). Probabilistic Nuclear-Norm Matrix Regression Regularized by Random Graph Theory. IEEE Transactions on Emerging Topics in Computational Intelligence.
  • Zhou, J., Zhang, Q., Zeng, S., Zhang, B., & Fang, L. (2024). Latent Linear Discriminant Analysis for feature extraction via Isometric Structural Learning. Pattern Recognition, 149, 110218.
  • Zhou, J., Wang, G., Zeng, S., & Zhang, B. (2023). Learning with Euler Collaborative Representation for Robust Pattern Analysis. ACM Transactions on Intelligent Systems and Technology. 109, 1-25.
  • Zhou, J., Zhang, B., & Zeng, S. (2022). Consensus Sparsity: Multi-context Sparse Image Representation via $L_{\infty}$-induced Matrix Variate. IEEE Transactions on Image Processing. 32, 603-616.
  • Zhou, J., Zhang, Q., Zeng, S., & Zhang, B. (2022). Fuzzy Graph Subspace Convolutional Network. IEEE Transactions on Neural Networks and Learning Systems. [paper]
  • Zhou, J., Zhang, B., Zeng, S., & Lai, Q. (2021). Joint Discriminative Latent Subspace Learning for Image Classification. IEEE Transactions on Circuits and Systems for Video Technology. [paper]
  • Zhou, J., Zeng, S., & Zhang, B. (2021). Sparsity-Induced Graph Convolutional Network for Semisupervised Learning. IEEE Transactions on Artificial Intelligence, 2(6), 549-563. [paper]
  • Zhou, J., Zeng, S., & Zhang, B. (2020). Two-stage knowledge transfer framework for image classification. Pattern Recognition, 107, 107529. [paper]
  • Zhou, J., Zeng, S., & Zhang, B. (2022). Learning salient self-representation for image recognition via orthogonal transformation. Expert Systems with Applications 212, 212, 118663. [paper]
  • Zhou, J., Zhang, Q., & Zhang, B. (2021). An automatic multi-view disease detection system via collective deep region-based feature representation. Future Generation Computer Systems, 115, 59-75. [paper]
  • Zhou, J., Zeng, S., & Zhang, B. (2022). Kernel nonnegative representation-based classifier. Applied Intelligence, 52(2), 2269-2289. [paper]
  • Zhou, J., Zhang, Q., & Zhang, B. (2021). Two-phase non-invasive multi-disease detection via sublingual region. Computers in Biology and Medicine, 137, 104782. [paper]
  • Zhang, B., & Zhou, J. (2021). Multi-feature representation for burn depth classification via burn images. Artificial Intelligence in Medicine, 118, 102128. [paper]
  • Zhou, J., Zhang, Q., & Zhang, B. (2020, September). A progressive stack face-based network for detecting diabetes mellitus and breast cancer. In 2020 IEEE International Joint Conference on Biometrics (IJCB) (pp. 1-9). IEEE. [paper]
  • Zhou, J., Zeng, S., & Zhang, B. (2021). Subspace-level dictionary fusion for robust multimedia classification. Multimedia Tools and Applications, 80(14), 21885-21898. [paper]
  • Zhou, J., Zhang, Q., Zhang, B., & Chen, X. (2019). TongueNet: a precise and fast tongue segmentation system using U-Net with a morphological processing layer. Applied Sciences, 9(15), 3128. [paper]
  • Zhou, J., & Zhang, B. (2019). Collaborative representation using non-negative samples for image classification. Sensors, 19(11), 2609. [paper]
  • For the full publication list and more details, plese kindly refer to the ‘Publication’ section, Thanks!

🔥新闻

  • [11/2025] I was awarded and granted 2025 Shanghai Overseas Talents Program!🎊🍎
  • [09/2025] We will held the IJCB2025 special session in Osaka, Japan. Welcome to partipate and communicate with us!🥰
  • [08/2025] My grant application of NSFC Youth Scientific Program has been approved!
  • [07/2025] Our two papers are accepted by IJCB2025! 😇
  • [08/2024] [Call for Paper] Mathematics (Q1, IF: 2.4) special issue on “Advanced Image Processing and Computational Intelligence: Methodologies and Applications”. Deadline: 20 June 2025.
  • [02/2024] From this month, I joined the Yagi Lab @ Osaka University as the Postdoctoral Research Fellow 🤩.
  • [12/2023] I visited CUHK-SZ as visiting scholar.
  • [10/2023] I have obtained my doctoral degree! 🥰.
  • [10/12/2022] A paper has been accepted by IEEE Transactions on Image Processing ;).
  • [30/09/2022] A paper has been accepted by IEEE Transactions on Neural Networks and Learning Systems.
  • [26/08/2022] Cheers! A paper has been accepted by Expert Systems with Applications.
  • [26/04/2022] Cheers! With passing the thesis proposal assessment, I have become a PhD candidate now!
  • [28/01/2022] I worked as a research assisstant at the Chinese University of Hong Kong, Shenzhen (CUHK-SZ) from today.
  • [03/11/2021] A paper has been accepted by IEEE Transactions on Circuits and Systems for Video Technology.

💻工作经验

  • 助教 2018-2023
    • 澳門大學
    • 带教课程: Formal Languages and Automata, Introduction to Computer Science
  • 访问研究员 2022-2024
    • 香港中文大學(深圳)
    • 研究方向: 图像处理, 医学生物特征识别
  • 访问博士生 2023
    • 电子科技大学长三角研究院(湖州)
    • Research topic: Sparse representation, image segmentation
  • IT Intern 2017
    • THERMO FISHER SCIENTIFIC CO.,LTD
    • Duties included: Maintain the business data on ERP system, Administration of electronic accounts system of staffs, Salesforce manual editing
  • NLP Android developer 2017.10-2018.01
    • CERTUSNET INC.
    • Duties included: Android programming, test and maintenance, Natural Language Processing Corpus processing and training, Salesforce manual editing

🎖️学术活动

  • 组织 IJCB2025 special session: Privacy-Preserving Biometrics: Advances in Methodologies and Applications
  • 审稿人
    • IEEE Transactions on Neural Networks and Learning Systems
    • Expert Systems With Applications
    • Artificial Intelligence Review
  • 客座编辑
    • Mathematics

🧀证书与奖项